RESEARCH


TRADE-OFFS BETWEEN AGRICULTURAL DEVELOPMENT AND BIODIVERSITY IN SUB-SAHARAN AFRICA

Mother elephant with twins in Amboseli National Park, Kenya, East Africa (Diana Robinson)

My current post-doctoral research involves mapping and modelling the trade-offs between agricultural development and the environment in three countries in Sub-Saharan Africa: Ethiopia, Ghana, and Zambia. Using freely-available data and spatial-analysis tools, I am working with Dr Tim Newbold at the Centre for Biodiversity and Environment Research (University College London / UCL) to determine how agricultural expansion is impacting ecosystems. Across the world, food production will need to increase to meet the demands of our growing human population. Our work, with the wider SENTINEL project, should help to identify how best to manage the socio-economic and environmental trade-offs associated with agricultural development, in line with UN Sustainable Development Goals.

USING A TRAIT-BASED APPROACH TO STUDY THE ECOLOGY AND BIODIVERSITY OF DEEP-SEA HYDROTHERMAL-VENT ECOSYSTEMS

Hydrothermal-vent chimney bustling with tubeworms, Endeavour field, NE Pacific Ocean (ONC)

For my PhD, I used a trait-based approach to study the ecology of deep-sea hydrothermal vent communities. Traditionally, the biodiversity of deep-sea hydrothermal-vent ecosystems has been assessed using taxonomic approaches (e.g. by measuring species richness, evenness, and taxonomic similarity). I used characteristics of species that affect their performance in an ecosystem, as well as their contribution to ecosystem functioning – their functional traits – to investigate whether looking at biodiversity through this trait-based lens could reveal new answers to old ecological questions. As well as comparing the contributions of rare and common species to the functional uniqueness vent communities, I co-led a project working with deep-sea ecologists from across the globe to build a trait database for deep-sea vent fauna (sFDvent). Creating this new dataset enabled me to use a trait-based approach to compare vent communities usually separated into distinct biogeographic provinces based on taxonomy. In my thesis, I demonstrated how a trait-based approach can be used in the conservation and management of vent ecosystems. Deep-sea hydrothermal vent ecosystems are currently pristine – untouched by humans. Nevertheless, they are soon to be impacted by commercial-scale mining, changing their ecology, and creating an urgent demand for conservation and management strategies.

WHAT DO AFRICAN WILDLIFE AND DEEP-SEA HYDROTHERMAL-VENT COMMUNITIES HAVE IN COMMON?

Well, there’s me researching them for starters!

Janneke Staaks

These fields of research are geographically isolated, with African biodiversity on land and contributing to ecosystems functioning with plenty of light, and deep-sea hydrothermal vents found thousands of metres below the sea surface, home to dense populations thriving in complete darkness. However, the ecological questions, statistical tools, and mapping approaches that are applied to study the biodiversity of both of these ecosystems are, in many cases, the same. Both study systems are data limited, both require the careful interpretation of results due to differences in sampling effort and methodology, and both are fascinating systems to study. Furthermore, both need care and attention to maintain their health and functioning under increasing human pressure.

Advertisements